Finite Difference preconditioning for compact scheme discretizations of the Poisson equation with variable coefficients

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined compact difference scheme for the time fractional convection-diffusion equation with variable coefficients

Fourth-order combined compact finite difference scheme is given for solving the time fractional convection–diffusion–reaction equation with variable coefficients. We introduce the flux as a new variable and transform the original equation into a system of two equations. Compact difference is used as a high-order approximation for spatial derivatives of integer order in the coupled partial diffe...

متن کامل

A Supra-Convergent Finite Difference Scheme for the Variable Coefficient Poisson Equation on Fully Adaptive Grids

We introduce a method for solving the variable coefficient Poisson equation on fully adaptive Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution...

متن کامل

A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids

We introduce a method for solving the variable coefficient Poisson equation on non-graded Cartesian grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in 2D) and octree (in 3D) data structures as an efficient means to represent the Cartesian grid, allowing for constraint-free grid generation. The schemes take advantage of sampling the solution at ...

متن کامل

Optimal Error Estimates of Compact Finite Difference Discretizations for the Schrödinger-Poisson System

We study compact finite difference methods for the Schrödinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave function ψ and external potential V(x). The CrankNicolson compact finite difference method and the semi-implicit compact finite difference method are both of order O(h4+τ2) in discrete l2 ,H1 and l norms with ...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2020

ISSN: 0377-0427

DOI: 10.1016/j.cam.2020.112872